132 research outputs found

    Water vapor and silicon monoxide maser observations in the protoplanetary nebula OH 231.8+4

    Full text link
    OH 231.8+4.2 is a well studied preplanetary nebula (pPN) around a binary stellar system that shows a remarkable bipolar outflow. To study the structure and kinematics of the inner 10-80 AU nebular regions we performed high-resolution observations of the H2_2O 61,6_{1,6}--52,3_{2,3} and 28^{28}SiO vv=2, JJ=1--0 maser emissions with the Very Long Baseline Array. The absolute position of both emission distributions were recovered using the phase referencing technique, and accurately registered in HST optical images. H2_2O maser clumps are found to be distributed in two areas of 20 mas in size spatially displaced by ∼\sim60 milli-arcseconds along an axis oriented nearly north-south. SiO masers are tentatively found to be placed between the two H2_2O maser emitting regions, probably indicating the position of the Mira component of the system. The SiO maser emission traces an inner equatorial component with a diameter of 12 AU, probably a disk rotating around the M-type star. Outwards, we detect in the H2_2O data a pair of polar caps, separated by 80 AU. We believe that the inner regions of the nebula probably have been altered by the presence of the companion, leading to an equator-to-pole density contrast that may explain the lack of H2_2O masers and strong SiO maser emission in the denser, equatorial regions.Comment: 5 pages, 1 figure, A&A accepte

    A high-sensitivity OH 5-cm line survey in late-type stars

    Full text link
    We have undertaken a comprehensive search for 5-cm excited OH maser emission from evolved stars representative of various stages of late stellar evolution. Observed sources were selected from known 18-cm OH sources. This survey was conducted with the 100-m Effelsberg telescope to achieve high signal to noise ratio observations and a sensitivity limit of about 0.05 to 0.1 Jy. A total of 64 stellar sources were searched for both main line and satellite line emission. We confirm the previous detection of 5 cm OH in Vy 2-2, do not confirm emission from NML-Cyg and do not report any other new detection within the above sensitivity limit. Implications of these results on the pumping mechanism of the OH radical in circumstellar envelopes are briefly discussed.Comment: 8 pages, 5 figures, A&A in pres

    Mapping the circumstellar SiO maser emission in R Leo

    Full text link
    The study of the innermost circumstellar layers around AGB stars is crucial to understand how these envelopes are formed and evolve. The SiO maser emission occurs at a few stellar radii from the central star, providing direct information on the stellar pulsation and on the chemical and physical properties of these regions. Our data also shed light on several aspects of the SiO maser pumping theory that are not well understood yet. We aim to determine} the relative spatial distribution of the 43 GHz and 86 GHz SiO maser lines in the oxygen-rich evolved star R Leo. We have imaged with milliarcsecond resolution, by means of Very Long Baseline Interferometry, the 43 GHz (28SiO v=1, 2 J=1-0 and 29SiO v=0 J=1-0) and 86 GHz (28SiO v=1 J=2-1 and 29SiO v=0 J=2-1) masing regions. We confirm previous results obtained in other oxygen-rich envelopes. In particular, when comparing the 43 GHz emitting regions, the 28SiO v=2 transition is produced in an inner layer, closer to the central star. On the other hand, the 86 GHz line arises in a clearly farther shell. We have also mapped for the first time the 29SiO v=0 J=1-0 emission in R Leo. The already reported discrepancy between the observed distributions of the different maser lines and the theoretical predictions is also found in R Leo.Comment: accepted for publication in A&

    EVLA Observations of OH Masers in ON 1

    Full text link
    This Letter reports on initial Expanded Very Large Array (EVLA) observations of the 6035 MHz masers in ON 1. The EVLA data are of good quality, lending confidence in the new receiver system. Nineteen maser features, including six Zeeman pairs, are detected. The overall distribution of 6035 MHz OH masers is similar to that of the 1665 MHz OH masers. The spatial resolution is sufficient to unambiguously determine that the magnetic field is strong (~ -10 mG) at the location of the blueshifted masers in the north, consistent with Zeeman splitting detected in 13441 MHz OH masers in the same velocity range. Left and right circularly polarized ground-state features dominate in different regions in the north of the source, which may be due to a combination of magnetic field and velocity gradients. The combined distribution of all OH masers toward the south is suggestive of a shock structure of the sort previously seen in W3(OH).Comment: 4 pages using emulateapj.cls including 2 tables and 2 color figure

    SiO masers from AGB stars in the vibrationally excited v=1,v=2, and v=3 states

    Get PDF
    The v=1 and v=2 J=1-0 (43 GHz), and v=1 J=2-1 (86 GHz) SiO masers are intense in AGB stars and have been mapped using VLBI showing ring-like distributions. Those of the v=1, v=2 J=1-0 masers are similar, but the spots are rarely coincident, while the v=1 J=2-1 maser arises from a well separated region farther out. These relative locations can be explained by models tools that include the overlap of two IR lines of SiO and H2O. The v=3 J=1-0 line is not directly affected by any line overlap and its spot structure and position, relative to the other lines, is a good test to the standard pumping models. We present single-dish and simultaneous VLBI observations of the v=1, v=2, and v=3 J=1-0 maser transitions of 28SiO in several AGB stars. The spatial distribution of the SiO maser emission in the v=3 J=1-0 transition from AGB stars is systematically composed of a series of spots that occupy a ring-like structure. The overall ring structure is extremely similar to that found in the other 43 GHz transitions and is very different from the structure of the v=1 J=2-1 maser. The positions of the individual spots of the different 43 GHz lines are, however, very rarely coincident, which in general is separated by about 0.3 AU (between 1 and 5 mas). These results are very difficult to reconcile with standard pumping models, which predict that the masers of rotational transitions within a given vibrational state require very similar excitation conditions, while the transitions of different vibrational states should appear in different positions. However, models including line overlap tend to predict v=1, v=2, v=3 J=1-0 population inversion to occur under very similar conditions, while the requirements for v=1 J=2-1 appear clearly different, and are compatible with the observational results.Comment: 9 pages, 4 figures accepted by A&

    Preliminary results on SiO v=3 J=1-0 maser emission from AGB stars

    Full text link
    We present the results of SiO maser observations at 43GHz toward two AGB stars using the VLBA. Our preliminary results on the relative positions of the different J=1-0 SiO masers (v=1,2 and 3) indicate that the current ideas on SiO maser pumping could be wrong at some fundamental level. A deep revision of the SiO pumping models could be necessary.Comment: poster, 2 pages, 2 figures, Proc. IAU Symp. 287 "Cosmic Masers: from OH to H0", R.S. Booth, E.M.L. Humphreys and W.H.T. Vlemmings, ed
    • …
    corecore